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Coarsening dynamics of adsorption processes with diffusional relaxation

Marcelo D. Grynberg
Departamento de Fı´sica, Universidad Nacional de La Plata, 1900 La Plata, Argentina

~Received 12 August 1997!

We investigate the late coarsening stages of one-dimensional adsorption processes with diffusional relax-
ation. The nonequilibrium domain size distribution is studied by means of the field theory associated with the
stochastic evolution. An exact asymptotic solution satisfying dynamical scaling is given for cluster sizes
smaller than the average domain length. Our results are supported and compared with Monte Carlo simulations.
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Random sequential adsorption models have been sys
atically investigated as basic prototypes of monolayer gro
in many physical, chemical, and biological processes@1,2#.
The characteristic feature dominating the late stage dynam
of such phenomena is the jamming of the available area
deposition, leading to the formation of partially covered a
fully blocked states. Recent experimental advances indi
that even for large colloidal particles, monolayer depos
may further redistribute on the substrate by particle diffus
on time scales comparable with the adsorption process@3#. A
range of theoretical efforts, including exact solution
asymptotic methods, and extensive numerical simulati
based on simple microscopic models, has been used to
derstand the role of fluctuations and collective effects
these processes@1,2#. There is ample simulational evidenc
for the existence of a scaling regime where the system
effectively made up of pure phase regions separated by
row interfaces, highly reminiscent of quenched binary allo
and fluids at low temperatures@4#. For large timest a net-
work of domains emerges such as can be characterized
single length scaleL(t), namely, the average domain siz
which coarsens continuously. On general grounds, typ
statistical quantities are expected to be scaling functions
single argument involving both space and time@5#.

Although there are several exact results in coarsening
namics available mostly in one dimension@5#, they essen-
tially refer to the dynamical scaling of two-point correlatio
~structure factor!, and average properties of the domain s
distribution ~DSD!. More complete descriptions of cluste
growth at the submicrometer level clearly require knowled
of the DSD itself, a quantity of fundamental interest in mo
ern nucleation theories and accessible to light microsc
studies @4#. As a contribution in this direction, here w
present an asymptotic analysis of nonequilibrium DSD in
simpler system lending itself more readily to this calculati
and still capturing basic aspects of coarsening phenome

Specifically, we consider an extension of the rand
dimer deposition problem of Flory@1# wherevacantpairs of
nearest-neighbor lattice sites are filled randomly by two h
core particles at a time, say with adsorption rateR. To pre-
vent an otherwise jamming behavior~resulting from both
hard core interactions and the lack of nearest-neighbor
cancies!, we enable the system to relax diffusively by sing
particle hopping between nearest neighbors with probab
h, though yet avoiding multiple occupancy. This leads to
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effective hopping motion of vacant sites that recombine
form larger voids accessible to deposition attempts, u
mately covering the full crystalline limit at large times.

Turning to the evaluation of DSD, in what follows w
shall restrict our discussion to one-dimensional systems.
from being trivial, asymptotic solutions ind51 share many
features emphasized in higher dimensions and do provid
demanding test for theories of late stage coarsening, par
larly for the dynamical scaling hypothesis. The strategy is
study the field theory that can be associated with the ma
equation of our adsorption-diffusion process@6#. This can be
achieved by means of a~pseudo!fermionic representation in
which its occupation numbers 1 or 0 at sitej correspond to
particle or vacancy at that location. After introducing cr
ation ~annihilation! Fermi operatorsCj

† (Cj ) along with the

local density fieldsn̂ j[Cj
†Cj , the stochastic evolution at

given time can be represented by the actione2Ht of the
quantum ‘‘Hamiltonian’’

H52R(
j

Cj
†Cj 11

† 2h(
j

~Cj
†Cj 111H.c.!1NR

1~R22h!(
j

n̂ j n̂ j 1112~h2R!(
j

n̂ j , ~1!

operating over a periodic chain withN locations. Here, depo
sition ~hopping! of dimers~particles! is described by the ef-
fect of the first~second! sum in Eq.~1!, whereas conserva
tion of probability requires the action of the remainin
~diagonal! field operators. We address the reader to Ref.@6#
for a more detailed derivation in this and related systems

The analysis of DSD requires one to consider the num
of domains having at leastL consecutive particles~with L
arbitrarily large!, by averaging over all possible histories u
to a certain instant. For a given initial probability distributio
uP(0)&, this is related to theL-point correlation function@7#

F~L,t !5
1

N (
j

^c̃un̂ j 11•••n̂ j 1Le2HtuP~0!&, ~2!

where^c̃u is an equally weighted sum of all accessible co
figurations, i.e., theleft steady state ofH. Although the di-
agonalization of the evolution operator becomes fairly st
dard by choosingR52h, i.e., dimer adsorption and particl
74 © 1998 The American Physical Society



o

ug

a
n-

he
as-

me

e
t is
-

-
rs

57 75COARSENING DYNAMICS OF ADSORPTION PROCESSES . . .
diffusion occurring with the same probability@8#, the diffi-
culties associated to the evaluation of these high order c
elators, as we shall see, are simplified significantly byde-
taching dimers with ratee[2h2R, whether or not the
selected pair of adjacent particles arrived together. Tho
this fictitious process introduces additional terms in Eq.~1!
@6#, the latter constraint ensures thatH remains bilinear in
C, C† operators. Therefore, it can be readily verified th
after a Bogoliubov-type similarity transformation in mome
tum space@9#, we are finally left with the free fermion
Hamiltonian

H5 (
2p,q,p

lqjq
1jq lq5b1a cosq, ~3!

wherea5R2e, b5R1e, and the elementaryj excitations
are given by

jWq52
ei ~p/4!

AN
(

j
eiq j S 2a cosuq ia21 sin uq

asinuq ia21 cosuq
DCW j ,

a5~R/e!1/4, tanuq5a2cot
q

2
, ~4!
e
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with jWq , CW j
† denoting, respectively, (

j2q

jq
1

), (
Cj

Cj
†

). So, in the

limit e→0 in which the original process is recovered, t
dynamical evolution becomes critical as it is dominated
ymptotically by low-lying massless modesq057p6q with
spectrumlq0

}q2.

We are especially interested in elucidating the long ti
behavior of the correlators~2! for which it is convenient to
expand the initial probability distribution in terms of thes
fermions. In particular, starting from an empty substrate, i
a simple matter to check thatuP(0)& corresponds to the co
herent pair state

uP~0!&5 )
0,q,p

~11tanuq jq
1j2q

1 !uc&, ~5!

where uc& is the right vacuum~steady! state ofH. Hence,
from Eqs.~2! and~3! it follows that for nonvanishing desorp
tion rates,F(L,t) can be expanded perturbatively in powe
of u[e24et asrs

L1(1/N)( j (n51
LL Fn, j (L,t), where
Fn, j~L,t !5
un

n!(q1

•••(
qn

^c
;
uCj 11

† Cj 11•••Cj 1L
† Cj 1L)

i 51

n

e22a~11cosqi !ttanuqi
jqi

1j2qi

1 uc&, ~6!
-

t

ant

d
s

0,qi,p and, rs51/(11Ae/R) is the coverage of the
steady state. To evaluate the vacuum expectation valu
this product, we use Wick’s theorem@10# for which we com-
pute all pair contractions~in this case, steady state expec
tion values! contributing to such a typical term. The seve
kinds of contractions that occur are readily obtained if
combine the inverse of Eq.~4! along with its associated an
ticommutative algebra. In the limitN→` this finally yields

^ClCm&52^Cl
†Cm

† &5
ARe

2b
~11b2!bn21, ~7!

^Cl
†Cm&52^ClCm

† &52^ClCm&, ~8!

^Cljq
1&5

eip/4

AN
cosuqeiql , ~9!

^Cl
†jq

1&5
e2 ip/4

AN
sin uqeiql , ~10!

where n5m2 l .0, and b5(Ae2AR)/(Ae1AR). Since
uP(0)& has zero total momentum, notice that the sum over
these pairings in Eq.,~6! ~with their corresponding permuta
tion signature!, results independent of the site location, i.
Fn, j (L,t)[Fn(L,t). Thus,F(L,t) remains translationally in-
variant for all subsequent times, as it should.
of

-

ll

,

Clearly, for finite detaching ratese, there is an exponen
tially large number of pairing groups contributing to Eq.~6!.
Even the calculation of the leading orderF1 becomes pro-
hibitively involved. However, in the limite→0 contractions
~7!, ~8!, and~9! vanish asAe. Thus, by taking into accoun
the Bogoliubov angles appearing in Eqs.~4! and ~6!, a mo-
ment of reflection shows that there are only two relev
pairing forms contributing toF1, namely,^C†j1&2 ^CC& ,
e.g., ^Cl

†jq
1&^Cm

† j2q
1 &^ClCm&, and ^C†j1& ^Cj1& , a re-

markable simplification. Using themultiplicity and signature
of these products, and after introducing the integrals

f n
6~t!5

1

p E
0

pe2t cosq

sin q
sin nq~16cosq!dq, ~11!

it is straightforward to show that

F1~L,t !52e2tFLI 0~t!1 (
n51

L21

~21!n~L2n! f n
1~t!G ,

~12!

where I 0(t) is a modified Bessel function of the first kin
@11#, and t[2Rt. Similarly, the number of pairing group
that yield a net contribution to higher orders of Eq.~6! re-
mains bounded irrespective of the domain sizeL, though
proliferating very rapidly with the ordern. For instance,
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76 57MARCELO D. GRYNBERG
there are 24 products of the form̂Cj1&2 ^C†j1&2,
72 ^C†j1&4 ^CC&2, and 72 ^C†j1&3 ^Cj1& ^CC& to be
considered in the calculation ofF2(L,t). The analysis is
simple albeit in fact rather lengthy. In the long time limit an
fixeddomain size, it can be shown that the former 24 pro
ucts contribute asL2/t, whereas the latter 144 are bound
by L5/t3. More specifically, employing the integrals~11!
along with modified Bessel functions of integer orderI n , we
find

F2~L,t !5
e22t

2 H L~L21!I 0
2~t!2 (

n51

L21

~L2n!

3@ I n
2~t!1 f n

1~t! f n
2~t!#J 1O~L5/t3!. ~13!

We are not concerned here with the possibility of impro
ing the second order calculation, which is a problem of gr
technical difficulty, but in showing that the approach, even
lowest order, can be successfully applied to late coarse
stages. It should be borne in mind, however, that forarbi-
trarily large domain sizes the prefactors involved in high
orders of Eq.~6! become increasingly weighted. Neverth
less, it turns out that these contributions become irrelev
within the scaling regimet→`, L→`, with L2/t!1, where
they provide solely subdominant large-time corrections.

In studying this asymptotic region it is helpful to consid
the numberNL(t) of filled L intervals between two vacan
cies, along with the density of domainsNd(t) averaged up to
a given instant. Clearly, the probability of observing a clus
having exactly L particles at that time is
P(L,t)5NL(t)/Nd(t). It can be easily checked tha
NL5F(L)1F(L12)22F(L11), ;t, while on the other
handNd coincides with the number of particle-vacancy i
terfaces, and therefore can be calculated as^ n̂ j (12n̂ j 11)&
~the brackets indicate an average over histories!. Following a
similar analysis discussed as in@6#, Nd(t) can be shown to
yield e2tI 1(t). Hence, by virtue of the asymptotic behavi
of Eqs.~12! and ~13!, it finally turns out that for
z[L/A2pt!1, P(L,t) satisfies the dynamical scaling hy
pothesis, namely,P(L,t)5P(z)/A2pt, whereP(z) is a uni-
versal scaling function given by

P~z!5
p

2
ze2pz2

@11erfc~Apz!#1
1

2
~12e22pz2

!1O~z5!,

~14!

and erfc (x)5(2/p)*x
`e2u2

du is the complementary erro
function @11#. Thus, there is an emerging typical length sc
L(t)5A2pt that characterizes the whole domain structu
at large times. In a statistical sense, the domain morpho
becomes self-similar if all lengths are measured in units
L(t). In fact, this characteristic scale can be ultimately ide
tified with the average domain size, since by construct
^L&5r(t)/Nd(t), wherer(t)5(LLNL(t)→1, is the particle
coverage; so in the long time limit^L&[L(t). Moreover, it
is known @6# that two point vacancy-vacancy correlatio
functions C(L,t)5 (1/N) ( j^(12n̂ j )(12n̂ j 1L)& scale as-
ymptotically as
-

-
t

n
ng
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r

e
y
f
-
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C~L,t !5
e2pz2

L2~ t !
Fp2 zerfc~Apz!12 sinh~pz2!G , ~15!

where the scaling parameter is taken as in Eq.~14!. Thus, we
see that both average domain size and pair correlation le
coalesce into asingle physical scale that is typically diffu-
sional. This is in line with the coarse grained~hydrody-
namic! level of description, the so-called~noiseless! modelA
or time-dependent Ginzburg-Landau approach@4,12#, in
which there is a single nonconserved scalar field~in our case,
the particle density! leading to a characteristic scale th
grows as At. In addition, these results reveal a clo
asymptotic relationship between DSD and two point corre
tions, namely,

P~L,t !52L~ t !C~L,t !1O~L2/t3/2!, ~16!

so, apart from a global change of scale they closely foll
each other.

We have conducted Monte Carlo simulations to confi
the validity of our theoretical expectations in a periodic cha
of N5105 sites. The microscopic dynamical rules accou
ing for the stochastic process described by Eq.~1! are as
follows. Starting from an empty lattice, dimer deposition a
tempts on randomly targetedbondsare made with probabil-
ity R while maintaining single occupancy throughout. Alte
natively, a particle hopping attempt with probabilityh takes
place isotropically within the selected bond provided it co
tains a vacant site; otherwise the move is rejected. The
Monte Carlo step is defined such that each bond is chec
once on average. This corresponds toN trials per unit time.
We direct the reader’s attention to Fig. 1, where we disp
the DSD results obtained for a wide range of domain siz

FIG. 1. Asymptotic domain size distribution att5103 for
R51,h50.5 ~squares!, and R51,h50.1 ~triangles, nonsoluble
case!. The averages were taken over 33104 histories starting from
an empty chain of 105 sites. For domain sizesL smaller than the
average domain size}t1/2 @here denoted asX(t)#, the numerical
data follow closely the theoretical results given by Eq.~14! in the
text ~solid line!. For comparison, we show the scaling distributio
of the birth process discussed in the text~dashed line!. The inset
provides evidence of exponential distribution for large dom
sizes.
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57 77COARSENING DYNAMICS OF ADSORPTION PROCESSES . . .
after averaging over 33104 histories up to 103 steps. This
has been adequate to suppress numerical fluctuations ar
particularly from large sizesL yet smaller than the typica
system length.

As expected, by settingR52h our results forL!L(t)
reproduce completely the asymptotic scaling distribut
~14!. However, for arbitrarily large domain sizes the re
evance of the high order corrections referred to above
evidently reflected in the progressive departure betw
theory and simulation. Nevertheless, our approach turns
to be still successful to yield an accurate estimate of the m
probable cluster size;0.468L(t), occurring in fact within a
regime of intermediate lengths. ForL@L(t) we content our-
selves with giving just the numerical results displayed in
inset of Fig. 1, which suggest the DSD follows an expon
tial distribution scaling asP(z);P0 e2kz, with k51.3(1)
andP051.8(1).Similar results were observed starting wi
other initial conditions, the scaling distribution always a
pearing in the long time limit, as long as only short-ran
spatial correlations are initially present. It is worth remarki
that this robustness applies as well to the unrestricted gen
caseRÞ2h ~also shown in Fig. 1!, where the dynamics can
not be solved explicitly.

The existence of dynamic scaling, however, appears to
associated with a clean separation between fast microsc
time scales}1/R and slow collective modes, such as t
gaplessj excitations of Eq.~4!. For instance, no scaling
behavior seems to hold for finite detaching ratese. In fact,
the noncritical dynamics includes a subcase (e5R5h) en-
tirely soluble by standard transfer matrix techniques@6#, in
which there is no dynamic scaling of any kind. Thus, t
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issue of universality in critical dynamics arises immediate
Whether or not slightly different nonequilibrium system
share a similar set of exponents and scaling functions is
an open problem that is receiving systematic attention@13#.
In this context, we conclude by examining a number of co
mon aspects between the dynamics discussed so far an
alternative process of cluster growth on a lattice, in wh
hard-core particles diffuse and eventually give birth to a
other particle at an adjacent site@14#. At the level of the
average domain size, it is by now well established that b
processes coarsen diffusively@13,14#. Furthermore, even the
dynamics of two point correlations can be described asym
totically by thesamescaling function~15! @6,14#. However,
at the more demanding microscopic level of DSD univers
ity no longer holds. In fact@14#, the birth process follows a
scaling distributionP(z)5(p/2)ze2(p/4)z2

, whose Gaussian
tail indicates the occurrence of relatively smaller doma
~see Fig. 1!, whereas on the other hand it cannot be eith
rescaled into Eq.~14! beyond third order inL/L(t).

In summary, we have presented a scaling picture that
counts for the late coarsening stages of simple adsorp
processes where, however, fluctuation-induced behavio
essential. As often in nonequilibrium statistical mechani
even the solution of the simplest models helps to conve
clearer understanding of the many characteristics presen
complex systems. While progress has been accomplishe
d51, a similar understanding of spatial structures in high
dimensional systems still requires further investigations.
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