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Coarsening dynamics of adsorption processes with diffusional relaxation

) Marcelo D. Grynberg
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We investigate the late coarsening stages of one-dimensional adsorption processes with diffusional relax-
ation. The nonequilibrium domain size distribution is studied by means of the field theory associated with the
stochastic evolution. An exact asymptotic solution satisfying dynamical scaling is given for cluster sizes
smaller than the average domain length. Our results are supported and compared with Monte Carlo simulations.
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Random sequential adsorption models have been systeraffective hopping motion of vacant sites that recombine to
atically investigated as basic prototypes of monolayer growttiorm larger voids accessible to deposition attempts, ulti-
in many physical, chemical, and biological procesgEg]. mately covering the full crystalline limit at large times.

The characteristic feature dominating the late stage dynamics Turning to the evaluation of DSD, in what follows we
of such phenomena is the jamming of the available area o$hall restrict our discussion to one-dimensional systems. Far
deposition, leading to the formation of partially covered andfrom being trivial, asymptotic solutions id=1 share many
fully blocked states. Recent experimental advances indicati¢atures emphasized in higher dimensions and do provide a
that even for large colloidal particles, monolayer depositslemanding test for theories of late stage coarsening, particu-
may further redistribute on the substrate by particle diffusioriarly for the dynamical scaling hypothesis. The strategy is to
on time scales comparable with the adsorption prog@s#\  study the field theory that can be associated with the master
range of theoretical efforts, including exact solutions,equation of our adsorption-diffusion procg§$. This can be
asymptotic methods, and extensive numerical simulationgchieved by means of @seudgfermionic representation in
based on simple microscopic models, has been used to uwhich its occupation numbers 1 or 0 at sjteorrespond to
derstand the role of fluctuations and collective effects inparticle or vacancy at that location. After introducing cre-
these processdd,2]. There is ample simulational evidence ation (annihilation Fermi operatori:}r (C;) along with the

for the existence of a scaling regime where the system igcal density fieldsn;=C/C;, the stochastic evolution at a

effectively made up of pure phase regions separated by nagiven time can be represented by the act®r™ of the
row interfaces, highly reminiscent of quenched binary alloysguantum “Hamiltonian”

and fluids at low temperaturéd]. For large times a net-

work of domains emerges such as can be characterized by a

single length scale£(t), namely, the average domain size, H=—-R> ClCl,,—h> (C/Cj,1+H.c)+NR

which coarsens continuously. On general grounds, typical ) !

statistical quantities are expected to be scaling functions of a . -

single argument involving both space and tifsé +(R-2h)> njnj 1 +2(h—R) X nj, 1)
Although there are several exact results in coarsening dy- ! )

namics available mostly in one dimensi@hl|, they essen-

tially refer to the dynamical scaling of two-point correlations

(structure factor, and average properties of the domain siz

operating over a periodic chain with locations. Here, depo-
sition (hopping of dimers(particles is described by the ef-

e . .
e - fect of the first(second sum in Eq.(1), whereas conserva-
distribution (DSD). More complete descriptions of cluster tion of probability requires the action of the remaining

growth at th_e submicromgter level clearly reguire kn9Wledge(diagona] field operators. We address the reader to IR&f.
of the DSD itself, a quantity of fundamental interest in mOd'for a more detailed derivation in this and related systems.

ern nucleation theories and accessible to light microscope The analysis of DSD requires one to consider the number

studies[4]. As a contribution in this direction, here we . . . . .
. . v .~ _of domains having at leadt consecutive particleéwith L
present an asymptotic analysis of nonequilibrium DSD in a

simpler system lending itself more readily to this caIcuIationalrbltrarlly large, by averaging over all possible histories up

and still capturing basic aspects of coarsening phenomenato a certain instant. For a given initial probability distribution
Specif - ; |P(0)), this is related to th&-point correlation functioi7]
pecifically, we consider an extension of the random
dimer deposition problem of Flofi] wherevacantpairs of 1 _
nearest-r!elghbor Ia’gtlce sites are filled raqdomly by two hard F(L,t)= N E (Injsq- -nj+Le‘Ht|P(O)>, 2)
core particles at a time, say with adsorption r&teTo pre- i
vent an otherwise jamming behavi@resulting from both -
hard core interactions and the lack of nearest-neighbor vavhere(y| is an equally weighted sum of all accessible con-
cancie$, we enable the system to relax diffusively by single figurations, i.e., thdeft steady state oH. Although the di-
particle hopping between nearest neighbors with probabilityagonalization of the evolution operator becomes fairly stan-
h, though yet avoiding multiple occupancy. This leads to andard by choosindR=2h, i.e., dimer adsorption and particle
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diffusion occurring with the same probabilifg], the diffi- e 2 At ; . & c! .

culties associatedgto the evaluatior?of thesgghigh order cor?’—vIth € Cj denoting, respectlvely,sc(q), (C})' S0, in the
elators, as we shall see, are simplified significantlydey  limit e—0 in which the original process is recovered, the
taching dimers with ratee=2h—R, whether or not the dynamical evolution becomes critical as it is dominated as-
selected pair of adjacent particles arrived together. Thougkimptotically by low-lying massless modegg= + 7+ q with

this fictitious process introduces additional terms in Hq. spectrumhqofxqz.

[6], the latter constraint ensures thdtremains bilinear in e are especially interested in elucidating the long time
C, C' operators. Therefore, it can be readily verified thatyenavior of the correlator€2) for which it is convenient to
after a Bogoliubov-type similarity transformation in momen- gxnand the initial probability distribution in terms of these

tum space[9], we are finally left with the free fermion formions. In particular, starting from an empty substrate, it is

Hamiltonian a simple matter to check th®(0)) corresponds to the co-
herent pair state
H=7ﬂ;‘<w Noéq€q MNg=b+acosq, 3
wherea=R—¢, b=R+ ¢, and the elementaryg excitations IP(o)y= II (1+tans, Eq €51, (5)
are given by O<g<m
R gl(m/4) o ~ @ C0S b ia~tsin g .
&g~ ~ N EJ: € asing,  ia"!cosd, Ci. where|y) is the right vacuunsteady state ofH. Hence,
from Eqgs.(2) and(3) it follows that for nonvanishing desorp-
q tion rates,F(L,t) can be expanded perturbatively in powers
a=(Rle)¥ tan@q=a20015, (4)  of u=e * asps+(1N)S;Sh_ F, (L,t), where
u" "
Foj(L,t)= m; .. .qE (¢ |CJT+1CJ+1' ) 'CJ'T+LC1'+LiHl e*2a(1+COSQi)ttan0qi§arié;irqi|l//>, 6)
K n =

0<qg,<w and, ps=1/(1+ Je/R) is the coverage of the Clearly, forfinite detaching rateg, there is an exponen-
steady state. To evaluate the vacuum expectation value &glly large number of pairing groups contributing to E6).
this product, we use Wick’s theore0] for which we com-  Even the calculation of the leading ordef becomes pro-
pute all pair contractionéin this case, steady state expecta-hibitively involved. However, in the limie— 0 contractions
tion value$ contributing to such a typical term. The seven (7), (8), and(9) vanish asye. Thus, by taking into account
kinds of contractions that occur are readily obtained if wethe Bogoliubov angles appearing in E¢. and (6), a mo-
combine the inverse of Eq4) along with its associated an- ment of reflection shows that there are only two relevant
ticommutative algebra. In the limN— oo this finally yields  pairing forms contributing td=;, namely,(C"¢*)? (CC) ,
e.g, (Clé&g {(Chél)(CICpr), and (CTEM) (CET) , a re-

—etety— 2\ on—1 markable simplification. Using theultiplicity and signature
(CiCm) (CICr) 2b (1+BB" @) of these products, and after introducing the integrals
C/Cmy=—(C,Cly=—(C/Cp), 8 1 (me7cosd
(CiCm (GCom (CCm ® f§(7)=;JO e sinng(l*cosq)dqg, (11
iml4
Ciéy=—= ial, 9
(Ciéq) JIN c0s b€ © it is straightforward to show that
giml4 _ L-1
ety _ ; R
(C, §g>—W sin 6,€'%", (10) FuLt)y=—e L|(,(T)+n§1 (—D)™L—n)f ()|,

(12
where n=m—1>0, and 8= (\e— VR)/(Je+ JR). Since
|P(0)) has zero total momentum, notice that the sum over alivherely(7) is a modified Bessel function of the first kind
these pairings in Eq6) (with their corresponding permuta- [11], and r=2Rt. Similarly, the number of pairing groups
tion signaturg, results independent of the site location, i.e.,that yield a net contribution to higher orders of K@) re-
Fn,j(L,t)=F,(L,t). Thus,F(L,t) remains translationally in- mains bounded irrespective of the domain sizethough
variant for all subsequent times, as it should. proliferating very rapidly with the orden. For instance,
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there are 24 products of the formCé™)2 (CTé™)2, 09 ————r
72 (CT¢P)Y*(CC)?, and 72(CTeT)3 (CET) (CC) to be g

considered in the calculation d¥,(L,t). The analysis is L
simple albeit in fact rather lengthy. In the long time limit and
fixed domain size, it can be shown that the former 24 prod-
ucts contribute as?/t, whereas the latter 144 are bounded
by L%/t3. More specifically, employing the integrald1)
along with modified Bessel functions of integer ordlgr we
find

0.6 |

P(L) X(t)

03

27 L—-1
FZ(L,t)zez iL(L—l)IS(r)—nzl(L—n) i

X[12(r)+17(7) fr?(r)]i +O(L5t%). (13 6 0.4 0.8 1.2
L/X(t)

We are not concerned here with the possibility of improv-  FIG. 1. Asymptotic domain size distribution at=10> for
ing the second order calculation, which is a problem of greaR=1h=0.5 (squares and R=1h=0.1 (triangles, nonsoluble
technical difficulty, but in showing that the approach, even incase. The averages were taken ovex 30" histories starting from
lowest order, can be successfully applied to late coarsenin@? €mpty chain of 1‘:031'}55- For domain sizels smaller than the
stages. It should be borne in mind, however, thatddsi- ~ 2verage domain sizet™ [here denoted aX(t)], the numerical
trarily large domain sizes the prefactors involved in higher data follow closely the theoretical results given by Et) in the
orders of Eq.(6) become increasingly weighted. Neverthe- text (soll_d line). For comparison, we show the sc_allng d|st.r|but|on
less, it turns out that these contributions become irrelevancpc th_e birth process discussed n the_ t@tashed ling: The inset .
within the scaling regime— o, L — s, with L2/t<1, where p.rowdes evidence of exponential distribution for large domain
they provide solely subdominant large-time corrections. SIZ€s.

In studying this asymptotic region it is helpful to consider
the numbem, (t) of filled L intervals between two vacan- C(L.t)= €
cies, along with the density of domaih(t) averaged up to ' L3(t)
a given instant. Clearly, the probability of observing a cluster
having exactly L particles at that time is where the scaling parameter is taken as in(@d). Thus, we
P(L,t)=N_(t)/Ng(t). It can be easily checked that see that both average domain size and pair correlation length
N =F(L)+F(L+2)—-2F(L+1), Vt, while on the other coalesce into aingle physical scale that is typically diffu-
handNy coincides with the number of particle-vacancy in- sional. This is in line with the coarse graingdydrody-
terfaces, and therefore can be calculated é§(1—ﬁj+1)> namig level of description, the so-callédoiselessmodelA
(the brackets indicate an average over historiéslliowinga  or time-dependent Ginzburg-Landau approdehl2, in
similar analysis discussed as[ii], Ny4(t) can be shown to which there is a single nonconserved scalar figidbur case,
yield e 71,(7). Hence, by virtue of the asymptotic behavior the particle density leading to a characteristic scale that
of Egs.(12) and (13), it finally turns out that for grows as Jt. In addition, these results reveal a close
z=L/\27r<1, P(L,t) satisfies the dynamical scaling hy- asymptotic relationship between DSD and two point correla-
pothesis, namely?(L,t) =P(z)/ 277, whereP(z) is auni-  tions, namely,
versal scaling function given by

- 1722

gzerfc( J7z)+2 sinwz?)|, (15

P(L,t)=2L(t)C(L,t)+O(L?%t%?), (16)

P(z)= gze‘”zz[1+erfc( \/;z)]+ %(1—e‘2”22)+0(25), so, apart from a global change of scale they closely follow
(14) each other.

We have conducted Monte Carlo simulations to confirm
o 2 the validity of our theoretical expectations in a periodic chain
and erfc &) =(2/m)[cxe"" du is the complementary error of N=10P sites. The microscopic dynamical rules account-
function[11]. Thus, there is an emerging typical length scalejng for the stochastic process described by Ekj.are as
L(t)= 2w that characterizes the whole domain structurefollows. Starting from an empty lattice, dimer deposition at-
at large times. In a statistical sense, the domain morphologiempts on randomly targetdmbndsare made with probabil-
becomes self-similar if all Iengths are measured in units Oity R while maintaining Sing]e occupancy throughout_ Alter-
L(t). In fact, this characteristic scale can be ultimately idenmatively, a particle hopping attempt with probabillytakes
tified with the average domain size, since by constructiorp|ace isotropically within the selected bond provided it con-
(Ly=p(t)/Ny(t), wherep(t) ==, LN (t)—1, is the particle  tains a vacant site; otherwise the move is rejected. The unit
coverage; so in the long time limiL)= L(t). Moreover, it  Monte Carlo step is defined such that each bond is checked
is known [6] that two point vacancy-vacancy correlation once on average. This correspondshtdrials per unit time.
functions C(L,t)= (1/N) 2j<(1—nj)(1—ﬁj+L)) scale as- We direct the reader’s attention to Fig. 1, where we display
ymptotically as the DSD results obtained for a wide range of domain sizes,
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after averaging over 8 10* histories up to 18 steps. This issue of universality in critical dynamics arises immediately.
has been adequate to suppress numerical fluctuations arisitighether or not slightly different nonequilibrium systems

particularly from large size& yet smaller than the typical share a similar set of exponents and scaling functions is still
system length. an open problem that is receiving systematic attenftisj.

As expected, by settinR=2h our results forL<</L(t) In this context, we conclude by examini_ng a number of com-
reproduce completely the asymptotic scaling distributionMOn aspects between the dynamics discussed so far and an
(14). However, for arbitrarily large domain sizes the rel- altérnative process of cluster growth on a lattice, in which
evance of the high order corrections referred to above igard-core particles diffuse and eventually give birth to an-
evidently reflected in the progressive departure betweeRtNer particle at an adjacent site4]. At the level of the

theory and simulation. Nevertheless, our approach turns oveérage domain size, it is by now well established that both

to be still successful to yield an accurate estimate of the mO%r?]c;ens];scessO(;otevtlrgenOidnl Ifgglr\r/glgﬁolr?]s E:r:tggrgneosrcer’iggggéh?n )
probable cluster size-0.468 L(t), occurring in fact within a y P ymp

) Py diate | h totically by thesamescaling function(15) [6,14]. However,
regime of intermediate lengths. F.bbﬁ(t) We content our- 4t the more demanding microscopic level of DSD universal-
selves with giving just the numerical results displayed in theIty no longer holds. In facf14], the birth process follows a
inset of Fig. 1, which suggest the DSD follows an exponen- ling distribution?(2) = (/2)ze~ 42 wh G )
tial distribution scaling asP(2)~Po e, with k=1.3(1) fe;:ila ilrrwlt(fl]icaliersI tuh:ao oc(c:Zu)r?e(r:Ze)élfa relativéalW sOrTS:'jlllera l(stosrlnaart}ns
andP,=1.8(1). Similar results were observed starting with (see Fig. 1. whereas on the other hand)i/t cannot be either
other initial conditions, the scaling distribution always ap- :

pearing in the long time limit, as long as only short-rangereslzalsei]'::grEq(led')hgegonristg'r:?egrgesrcg‘.:}E(t).(':t re that ac-
spatial correlations are initially present. It is worth remarking u y, W Ve p INg pictu

that this robustness applies as well to the unrestricted gener(é?ums for the late coarsening stages of simple adsorption

caseR+ 2h (also shown in Fig. L where the dynamics can- processes where, however, fluctuation-induced behavior is
not be solved explicitly ' essential. As often in nonequilibrium statistical mechanics,

The existence of dynamic scaling, however, appears to paven the solution of the simplest models helps to convey a

associated with a clean separation between fast microscop%ean:“r understanding of the many characteristics present in

time scalesx1/R and slow collective modes, such as the goznlplzxsf%?lfr”:; d\évrgltleemglrizgrg?z h;?albgterzc?ﬁrcgsmiglﬁihiderln
gapless¢ excitations of Eq.(4). For instance, no scaling dime,nsional systems still re guires Ff)urther investi ationsg
behavior seems to hold for finite detaching ratedn fact, Y q 9 '

the noncritical dynamics includes a subcagse- R=h) en- It is a pleasure to thank R. B. Stinchcombe for helpful
tirely soluble by standard transfer matrix techniq(i®s in  discussions and remarks. The author acknowledges financial
which there is no dynamic scaling of any kind. Thus, thesupport of CONICET, Argentina.
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